Going Deeper with Convolutional Neural Network for Intelligent Transportation

نویسنده

  • Tairui Chen
چکیده

Over last several decades, computer vision researchers have been devoted to findgood feature to solve different tasks, such as object recognition, object detection,object segmentation, activity recognition and so forth. Ideal features transform rawpixel intensity values to a representation in which these computer vision problemsare easier to solve. Recently, deep features from covolutional neural network(CNN)have attracted many researchers in computer vision. In the supervised setting,these hierarchies are trained to solve specific problems by minimizing an objectivefunction. More recently, the feature learned from large scale image dataset havebeen proved to be very effective and generic for many computer vision task. Thefeature learned from recognition task can be used in the object detection task.This work uncover the principles that lead to these generic feature representa-tions in the transfer learning, which does not need to train the dataset again buttransfer the rich feature from CNN learned from ImageNet dataset.We begin by summarize some related prior works, particularly the paper in objectrecognition, object detection and segmentation. We introduce the deep feature tocomputer vision task in intelligent transportation system. We apply deep featurein object detection task, especially in vehicle detection task. To make fully useof objectness proposals, we apply proposal generator on road marking detectionand recognition task. Third, to fully understand the transportation situation, weintroduce the deep feature into scene understanding. We experiment each task fordifferent public datasets, and prove our framework is robust.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

A Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images

Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery

Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...

متن کامل

An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network

Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016